25^x+2=1/625^x

Simple and best practice solution for 25^x+2=1/625^x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 25^x+2=1/625^x equation:



25^x+2=1/625^x
We move all terms to the left:
25^x+2-(1/625^x)=0
Domain of the equation: 625^x)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
25^x-1/625^x+2=0
We multiply all the terms by the denominator
25^x*625^x+2*625^x-1=0
Wy multiply elements
15625x^2+1250x-1=0
a = 15625; b = 1250; c = -1;
Δ = b2-4ac
Δ = 12502-4·15625·(-1)
Δ = 1625000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1625000}=\sqrt{62500*26}=\sqrt{62500}*\sqrt{26}=250\sqrt{26}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1250)-250\sqrt{26}}{2*15625}=\frac{-1250-250\sqrt{26}}{31250} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1250)+250\sqrt{26}}{2*15625}=\frac{-1250+250\sqrt{26}}{31250} $

See similar equations:

| 3(x+2)=-5-2(x-3)* | | 0,8(2x-4)=(2x+4)4 | | 6x-36=42. | | x^2-87x-29=0 | | -3-15x=-9 | | -3y-15=—9 | | 2x+16=4x-7 | | 4u=28=u= | | 2(-3+y)-2y=0 | | 15/20=3/k | | -4x+9=-3x-14 | | 0=-4.9x^2+19.6x+24.5 | | P^2-11q+24=0 | | 4(3a-7)=46 | | 〖2x〗^2+6x-15=0 | | 3x÷24=21 | | 5(t~3)=8 | | -3/2(2/3x-5/6)-2x2-7/2=0 | | x3-x-30=0 | | 4(5y~2)=40 | | 9c+5=221 | | 4×k-6=20 | | 0=-4.9t^2+24.5t+9.6 | | 0.19=9.8t+1/29.8t^2 | | −4x+3=−9 | | $1,949/x=100/10 | | 48-49x+56-28x-43+16x+11-35x-18x=-6 | | x.8=109 | | -7y-31=2(y+7) | | 3x(4x+8)(x-5)=0 | | −x+6=4x−19 | | 28+(3x-5)=110 |

Equations solver categories